Part Number Hot Search : 
80NF55 PZTM1101 MIC2619 105K2 60003D MSK613H FX507 M5M510
Product Description
Full Text Search
 

To Download APA2603AJI-TRG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . 2 . 8 w s t e r e o c l a s s - d a u d i o p o w e r a m p l i f i e r a n d c l a s s a b h e a d p h o n e d r i v e r ( d c v o l u m e c o n t r o l , u v p , a g c f u n c t i o n ) a p a 2 6 0 3 a the apa2603a is a stereo, high efficiency, filter-free class- d audio amplifier available in a sop-24 package. the apa2603a provide the precise dc volume control, the gain range is from +20db (v volume =0v) to -80db (v volume =5v) with 64 steps precise control. it?s easy to get the suitable amplifier?s gain with the 64 steps gain setting. the filter-free architecture eliminates the output filters compared to the traditional class-d audio amplifier, and reduces the external component counts and the compo- nents high, it could save the pcb space, system cost, simplifies the design and the power loss at filter. apa2603a provides an agc (non-clip) function, and this function can low down the dynamic range for large input signal. apa2603a can provide from 20db to -80db with 64 steps gain decrease for non-clipping function, and this function can avoid output signal clipping. the apa2603a also integrates the de-pop circuitry that reduces the pops and click noises during power on/off or shutdown enable process. the apa2603a has build-in over-current and thermal pro- tection that prevent the chip being destroyed by short cir- cuit or over temperature situation. apa2603a combines a stereo bridge-tied loads (btl) mode for speaker drive and a stereo single-end (se) mode for headphone drive into a single chip, where both modes are easily switched by the se/btl input control pin signal. apa2603a is capable of driving 2.8w at 5v into 4 w speaker. the efficiency can archived 85% at r l =4 w when p o =2.8w at v dd =5v. apa2603a is capable of driving 60mw at 5v into 32 w headphone f e a t u r e s g e n e r a l d e s c r i p t i o n a p p l i c a t i o n s l c d t v s d v d p l a y e r a c t i v e s p e a k e r s o p e r a t i n g v o l t a g e : 3 . 3 v - 5 . 5 v h i g h e f f i c i e n c y 8 5 % a t p o = 2 . 8 w , 4 w s p e a k e r , v d d = 5 v f i l t e r - f r e e c l a s s - d a m p l i f i e r l o w s h u t d o w n c u r r e n t - i d d = 1 m a a t v d d = 5 v 6 4 s t e p s v o l u m e a d j u s t a b l e f r o m - 8 0 d b t o + 2 0 d b b y d c v o l t a g e w i t h h y s t e r e s i s a g c ( n o n - c l i p ) f u n c t i o n - d i s a b l e : 0 . 4 5 v d d ~ v d d , f l o a t i n g - m a x , p o w e r : g n d u v p f u n c t i o n - d i s a b l e : f l o a t i n g o u t p u t p o w e r a t t h d + n = 1 % b t l m o d e - 2 . 2 5 w a t v d d = 5 v , r l = 4 w - 1 . 3 w a t v d d = 5 v , r l = 8 w s e m o d e - 6 8 m w a t v d d = 5 v , r l = 3 2 w o u t p u t p o w e r a t t h d + n = 1 0 % - 2 . 8 w a t v d d = 5 v , r l = 4 w - 1 . 6 w a t v d d = 5 v , r l = 8 w l e s s e x t e r n a l c o m p o n e n t s r e q u i r e d t w o o u t p u t m o d e s a l l o w a b l e w i t h b t l a n d s e m o d e s s e l e c t e d b y s e / b t l p i n i n p u t s i g n a l a n d h e a d p h o n e o u t p u t s i g n a l i n p h a s e t h e r m a l a n d o v e r - c u r r e n t p r o t e c t i o n s w i t h a u t o - r e c o v e r y p o w e r e n h a n c e d p a c k a g e s s o p - 2 4 ( 3 0 0 m i l ) , d i p - 2 4 ( 3 0 0 m i l ) l e a d f r e e a n d g r e e n d e v i c e s a v a i l a b l e ( r o h s c o m p l i a n t )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 a p a 2 6 0 3 a p i n c o n f i g u r a t i o n s i m p l i f i e d a p p l i c a t i o n c i r c u i t routp routn loutn loutp rin lin volume hp _ rout hp _ lout se / btl stereo input signals se / btl signal se / btl signal dc volume control apa 2603 a gnd 5 gnd 4 21 gnd se / btl 9 23 vdd lin 6 20 gnd rin 3 22 routn bypass 2 24 routp 19 loutn 18 vdd volume 7 sd 1 17 loutp mute 8 vdd 12 agc 10 uvp 11 16 nc 15 hp _ rout 14 nc 13 hp _ lout sop - 24 dip - 24 apa 2603 a top view apa 2603 a r o u t p 1 h p _ r o u t 2 s d 3 b y p a s s 4 2 0 v d d 1 9 r o u t n 1 8 g n d 1 7 l o u t n r i n 5 1 5 l o u t p 1 4 h p _ l o u t 1 3 v d d 1 2 u v p 1 1 a g c 1 6 v d d g n d 6 l i n 7 v o l u m e 8 m u t e 9 s e / b t l 1 0 qfn 4 x 4 - 20 a ( top view )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 3 a p a 2 6 0 3 a o r d e r i n g a n d m a r k i n g i n f o r m a t i o n note : anpec lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with rohs. anpec lead-free products meet or exceed the lead-free requirements of ipc/jedec j-std-020c for msl classification at lead-free peak reflow temperature. anpec defines ?green? to mean lead-free (rohs compliant) and halogen free (br or cl does not exceed 900ppm by weight in homogeneous material and total of br and cl does not exceed 1500ppm by weight). a b s o l u t e m a x i m u m r a t i n g s ( n o t e 1 ) symbol parameter rating unit v dd supply voltage (vdd, pvdd, vdc to gnd) - 0.3 to 6 input voltage (lin, rin to gnd) - 0.3 to v dd +0.3 input voltage ( sd , mute, agc, vdc, volume and se/btl, bypass to gnd) - 0.3 to v dd +0.3 v t j maximum junction temp erature 150 t stg storage temperature range - 65 to +150 t s dr maximum soldering temperature range , 10 seconds 260 o c p d power dissipation internally limited w n o t e 1 : s t r e s s e s b e y o n d t h o s e l i s t e d u n d e r ? a b s o l u t e m a x i m u m r a t i n g s ? m a y c a u s e p e r m a n e n t d a m a g e t o t h e d e v i c e . t h e s e a r e s t r e s s r a t i n g s o n l y a n d f u n c t i o n a l o p e r a t i o n o f t h e d e v i c e a t t h e s e o r a n y o t h e r c o n d i t i o n s b e y o n d t h o s e i n d i c a t e d u n d e r ? r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s ? i s n o t i m p l i e d . e x p o s u r e t o a b s o l u t e m a x i m u m r a t i n g c o n d i t i o n s f o r e x t e n d e d p e r i o d s m a y a f f e c t d e v i c e r e l i a b i l i t y . t h e r m a l c h a r a c t e r i s t i c s symbol parameter typical value unit q ja thermal resistance - junction to ambient (note 2 ) sop - 24 dip - 24 qfn4x4 - 20a 96 50 45 o c /w q j c thermal resistance - junction to case (note 3 ) sop - 24 dip - 24 qfn4x4 - 20a 18 50 7 o c /w n o t e 2 : p l e a s e r e f e r t o ? l a y o u t r e c o m m e n d a t i o n ? , t h e g n d p i n o n t h e c e n t r a l o f t h e i c s h o u l d c o n n e c t t o t h e g r o u n d p l a n , a n d t h e p c b i s a 2 - l a y e r , 5 - i n c h s q u a r e a r e a w i t h 2 o z c o p p e r t h i c k n e s s . n o t e 3 : t h e c a s e t e m p e r a t u r e i s m e a s u r e d a t t h e c e n t e r o f t h e g n d p i n o n t h e u n d e r s i d e o f t h e s o p - 2 4 p a c k a g e . apa 2603 a package code k : sop - 24 operating ambient temperature range i : - 40 to 85 o c handling code tu : tube lead free code lead free code handling code temperature range package code apa 2603 a k : apa 2603 a xxxxx xxxxx - date code g : halogen and lead free device tr : tape & reel qa : qfn 4 x 4 - 20 a apa 2603 a qa : apa 2603 xxxxx xxxxx - date code apa 2603 a j : apa 2603 a xxxxx xxxxx - date code j : dip - 24 a
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 4 a p a 2 6 0 3 a r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s symbol parameter range unit v dd supply voltage 3.3 ~ 5.5 sd , mute 2 ~ v dd v ih high l evel t hreshold v oltage s e/ btl 0.8 v dd ~ v dd sd, mute 0~0.8 v il low l evel t hreshold v oltage se/btl 0~1.0 v v icm common mode input voltage 1 ~ v dd - 1 v t a ambient t emperature range - 40 ~ 85 t j junction temperature range - 40 ~ 125 o c r l speaker resistance 3.5 ~ w e l e c t r i c a l c h a r a c t e r i s t i c s apa2603a symbol parameter test condition s min. typ. max. unit i dd supply current (btl) v mute = 0 v , v /sd = 5 v , no load - 6.5 15 ma i dd supply current (se) v mute = 0 v , v /sd = 5 v , no load - 2.5 5 ma i mute supply current (btl)(mute) v mute = 5 v , v /sd = 5 v , n o load - 6.5 15 ma i mute supply current (se)(mute) v mute = 5 v , v /sd = 5 v , no load - 2.5 5 ma i sd supply current v mute = 0 v , v /sd = 0 v , no load - - 1 i i input c urrent sd , mute, volume - - 1 m a f osc oscillator frequency 400 500 600 khz r i input resistance (btl) gain=20db 31 36 42 k w r i input resistance (se) gain=3.5db 51 59 68 k w p - channel power mosfet - 270 - v dd =5.5v, i l =0.8a n - channel power mosfet - 260 - p - channel power mosfet - 285 - v dd =4.5v, i l =0.6a n - channel power mosfet - 270 - p - channel power mosfet - 300 - r dson static drain - source on - state resistance v dd =3.6v, i l =0.4a n - channel power mosfet - 280 - m w t start - up start - up time from shutdown bypass capacitor, c b =2.2 m f. - 1.2 2 s v d d = 5 v , v g n d = 0 v , t a = 2 5 o c , g a i n = 2 0 d b ( u n l e s s o t h e r w i s e n o t e d )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 5 a p a 2 6 0 3 a e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) v d d = 5 v , v g n d = 0 v , t a = 2 5 o c , g a i n = 2 0 d b ( u n l e s s o t h e r w i s e n o t e d ) operating characteristics, btl m ode apa2603a symbol parameter test condition s min. typ. max. unit v dd = 5 v, t a =25 x c , gain=6db r l = 4 w 2.1 2.2 - thd +n =1% f in =1 k hz r l = 8 w 1.0 1.3 - r l = 4 w - 2.8 - p o output power thd +n =1 0 % f in =1 k hz r l = 8 w - 1.7 - w h efficiency r l = 4 w , p o =2.8w 80 85 - r l = 4 w , p o = 1.6 w - 0.1 0.3 thd+n total harmonic distortion p lus noise f in =1 k hz r l = 8 w , p o = 0.8 w - 0.08 0.2 % crosstalk channel separation p o =0.2w, r l =4 w , f in =1khz - - 100 - 60 f in = 100 hz - - 60 - 50 psrr power supply reject ion ratio r l = 4 w , input ac - ground f in = 1k hz - - 70 - 60 snr (note 5) signal to noise ratio with a - weighting filter v o = 1v rms , r l =8 w - - 82.5 - att mute mute attenuation f in =1 k hz , r l = 8 w , v in = 1v rms - - 90 - 80 att shutdown shutdown att enuation f in =1 k hz , r l = 8 w , v in = 1v rms - - 120 - 90 db v n output noise w ith a - weight ing filter (gain=20db) - 75 100 m v rms v os output offset voltage r l = 4 w (gain=20db) - 5 30 mv v dd = 3.6 v, t a =25 x c , gain=6db r l = 4 w 1.0 1.3 - thd +n =1% f in =1 k hz r l = 8 w 0.6 0.65 - r l = 4 w - 1.7 - p o output power thd +n =1 0 % f in =1 k hz r l = 8 w - 0.85 - w h efficiency r l = 4 w , p o =1.4w 78 83 - r l = 4 w , p o = 0.8 w - 0.2 0.4 thd+n total harmonic distortion plus noise f in =1 k hz r l = 8 w , p o = 0.5 w - 0.1 0.3 % crosstalk channel separati on p o =0.1w, r l =4 w , f in =1khz - - 100 - 60 f in = 100 hz - - 60 - 50 psrr power supply rejection ratio r l = 4 w , input ac - ground f in = 1k hz - - 70 - 60 snr signal to noise ratio with a - weighting filter v o = 1v rms , r l =8 w - - 82.5 - att mute mute attenuation f in =1 k hz , r l = 8 w , v in = 1v rms - - 85 - 70 att shutdown shutdown attenuation f in =1 k hz , r l = 8 w , v in = 1v rms - - 110 - 90 db v n output noise w ith a - weight ing filter (gain=20db) - 75 100 m v rms v os output offset voltage r l = 4 w , (gain=20db) - 5 30 mv
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 6 a p a 2 6 0 3 a e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) v d d = 5 v , v g n d = 0 v , t a = 2 5 o c , g a i n = 2 0 d b ( u n l e s s o t h e r w i s e n o t e d ) operating characteristics, se mode apa2603a symbol parameter test condition s min. typ. max. unit v dd = 5 v, t a =25 x c , gain=3.5db thd +n =1% f in =1 k hz r l = 32 w 50 60 - p o output power thd +n =1 0 % f in =1 k hz r l = 32 w - 75 - m w thd+n total harmonic distort ion plus noise f in =1 k hz r l = 32 w p o = 42.5m w - 0.02 - % crosstalk channel separation p o =6mw, r l =32 w , f in =1khz - - 100 - 80 f in = 100 hz - - 60 - 50 psrr power supply rejection ratio r l = 32 w , input ac - ground f in = 1k hz - - 75 - 60 snr signal to noise ratio with a - weighting filter v o = 1v rms , r l = 32 w. - - 94 - db v n output noise w ith a - weight ing filter (gain=3.5db) - 20 40 m v rms v os output offset voltage r l = 32 w , (gain=3.5db) - 5 12 mv pin no. sop - 24 qfn - 20 name function 1 3 sd shutdown m ode c ontrol i nput. pulling low the voltage on this pin shuts off the ic. 2 4 bypass bias voltage for power amplifiers. 3 5 rin i nput of right channel power amplifier . 4,5 6 agnd analog signal g round. 6 7 lin i nput of left channel power amplifier . 7 8 volume internal gain setting input. connect to gnd to set max gain=20db 8 9 mute mute control signal input, hold low for normal operation, hold high to mute. 9 10 se/btl output mode control inp ut, high for se output mode and low for btl mode. 14,16 - nc n o connection. 10 11 agc vdd~0.45vdd or agc floating, disable this function. 11 12 uvp under voltage protection input. floating or pull ? h ? disable this function. 12,18,23 13,16,20 vdd p ower 13 14 hp_lout headphone output of left channel power amplifier. 15 2 hp_rout headphone output of right channel power amplifier. 17 15 loutp positive output of left channel power amplifier. 19 17 loutn negative output of left channel power amplifier. 2 0,21 18 pgnd power ground for the h - bridges. 22 19 routn negative output of right channel power amplifier. 24 1 routp positive output of right channel power amplifier. p i n d e s c r i p t i o n
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 7 a p a 2 6 0 3 a t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s e f f i c i e n c y v s . o u t p u t p o w e r ( 4 w ) e f f i c i e n c y v s . o u t p u t p o w e r ( 8 w ) t h d + n v s . o u t p u t p o w e r t h d + n v s . o u t p u t p o w e t h d + n v s . o u t p u t p o w e r t h d + n v s . f r e q u e n c y t h d + n ( % ) output power ( w ) 0 2 500 m 1 1 . 5 10 0 . 1 1 0 . 01 f in = 1 khz r l = 8 w a v = 20 db aux - 0025 aes - 17 ( 20 khz ) btl mode 2 . 5 v dd = 5 . 5 v v dd = 5 v v dd = 3 . 3 v output power ( w ) t h d + n ( % ) 0 150 m 50 m 100 m f in = 1 khz r l = 32 w a v = 3 . 5 db aes - 17 ( 20 khz ) se mode 10 0 . 1 1 0 . 01 v dd = 5 . 5 v v dd = 5 v v dd = 3 . 3 v t h d + n ( % ) frequency ( hz ) v dd = 5 v p o = 1 . 8 w r l = 4 w aux - 0025 aes - 17 ( 20 khz ) a v = 20 db a v = 10 db 20 20 k 100 1 k 10 k 0 . 001 10 0 . 0 1 0 . 1 1 t h d + n ( % ) output power ( w ) 0 . 01 10 0 . 1 1 0 4 . 5 1 2 3 f in = 1 khz r l = 4 w a v = 20 db aux - 0025 aes - 17 ( 20 khz ) btl mode v dd = 5 . 5 v v dd = 5 v v dd = 3 . 3 v 4 e f f i c i e n c y ( % ) output power ( w ) 100 0 10 20 30 40 50 60 70 80 90 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 r l = 4 w + 33 m h f in = 1 khz thd + n ?? 10 % a v = 20 db aux - 0025 aes - 17 ( 20 khz ) v dd = 5 v v dd = 3 . 3 v e f f i c i e n c y ( % ) output power ( w ) 0 10 20 30 40 50 60 70 80 90 100 0 0 . 5 1 . 0 1 . 5 2 . 0 r l = 8 w + 33 m h f in = 1 khz thd + n ?? 10 % a v = 20 db aux - 0025 aes - 17 ( 20 khz ) v dd = 5 v v dd = 3 . 3 v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 8 a p a 2 6 0 3 a t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s t h d + n v s . f r e q u e n c y t h d + n v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y t h d + n ( % ) frequency ( hz ) 0 . 001 10 0 . 01 0 . 1 1 20 20 k 100 1 k 10 k v dd = 5 v p o = 0 . 8 w r l = 4 w aux - 0025 aes - 17 ( 20 khz ) a v = 20 db a v = 20 db t h d + n ( % ) frequency ( hz ) 20 20 k 100 1 k 10 k 0 . 001 10 0 . 01 0 . 1 1 v dd = 5 . 0 v p o = 42 . 5 mw r l = 4 w aux - 0025 aes - 17 ( 20 khz ) a v = 3 . 5 db frequency ( hz ) v dd = 3 . 6 v p o = 0 . 1 w r l = 4 w aux - 0025 aes - 17 ( 20 khz ) c r o s s t a l k ( d b ) l - channel to r - channel r - channel to l - channel 20 20 k 100 1 k 10 k - 100 - 60 - 90 - 80 - 70 frequency ( hz ) v dd = 5 v p o = 0 . 2 w r l = 4 w aux - 0025 aes - 17 ( 20 khz ) c r o s s t a l k ( d b ) - 100 - 60 - 90 - 80 - 70 20 20 k 100 1 k 10 k r - channel to l - channel l - channel to r - channel frequency ( hz ) c r o s s t a l k ( d b ) 20 20 k 100 1 k 10 k - 100 - 60 - 90 - 80 - 70 v dd = 3 . 6 v p o = 0 . 1 w r l = 8 w aux - 0025 aes - 17 ( 20 khz ) r - channel to l - channel l - channel to r - channel c r o s s t a l k ( d b ) frequency ( hz ) - 100 - 60 - 90 - 80 - 70 20 20 k 100 1 k 10 k v dd = 5 v p o = 0 . 2 w r l = 8 w aux - 0025 aes - 17 ( 20 khz ) r - channel to l - channel l - channel to r - channel
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 9 a p a 2 6 0 3 a t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y f r e q u e n c y r e s p o n s e s h u t d o w n a t t e n u a t i o n v s . f r e q u e n c y m u t e a t t e n u a t i o n v s . f r e q u e n c y f r e q u e n c y r e s p o n s e frequency ( hz ) o u t p u t n o i s e v o l t a g e ( v r m s ) 20 m 120 m 40 m 60 m 80 m 100 m 20 20 k 100 1 k 10 k a v = 20 db a v = 14 db a v = 6 db v dd = 3 . 6 v r l = 4 w input ac ground aux - 0025 aes - 17 ( 20 khz ) frequency ( hz ) 20 m 120 m 40 m 60 m 80 m 100 m o u t p u t n o i s e v o l t a g e ( v r m s ) 20 20 k 100 1 k 10 k a v = 20 db a v = 14 db a v = 6 db v dd = 5 v r l = 4 w input ac ground aux - 0025 aes - 17 ( 20 khz ) frequency ( hz ) + 0 + 360 + 90 + 180 + 270 + 2 + 22 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 20 100 k 100 1 k 10 k p h a s e ( d e g ) g a i n ( d b ) amplitude , a v = 20 db amplitude , a v = 14 db amplitude , a v = 8 db phase , a v = 20 db phase , a v = 14 db phase , a v = 8 db v dd = 3 . 6 v r l = 4 w po = 70 mw aux - 0025 + 0 + 360 + 90 + 180 + 270 + 2 + 22 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 20 100 k 100 1 k 10 k amplitude , a v = 20 db amplitude , a v = 14 db phase , a v = 20 db phase , a v = 14 db phase , a v = 8 db amplitude , a v = 8 db v dd = 5 v r l = 8 w po = 70 mw aux - 0025 g a i n ( d b ) p h a s e ( d e g ) frequency ( hz ) - 100 - 60 - 90 - 80 - 70 g a i n ( d b ) 20 20 k 100 1 k 10 k frequency ( hz ) v dd = 5 . 0 v r l = 8 w a v = 20 db v o = 1 vrms aux - 0025 aes - 17 ( 20 khz ) g a i n ( d b ) frequency ( hz ) - 120 - 100 20 20 k 100 1 k 10 k - 60 - 80 - 70 - 90 - 110 v dd = 5 . 0 v r l = 8 w a v = 20 db v o = 1 vrms aux - 0025 aes - 17 ( 20 khz ) - 140 - 130
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 0 a p a 2 6 0 3 a t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s p s r r v s . f r e q u e n c y g a i n v s . v o l u m e v o l t a g e s u p p l y c u r r e n t v s . s u p p l y v o l t a g e ( b t l ) - 80 - 60 - 40 - 20 0 20 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 dc volume voltage ( v ) g a i n ( d b ) v dd = 5 . 0 v no load aux - 0025 aes - 17 ( 20 khz ) gain down gain up s u p p l y c u r r e n t v s . s u p p l y v o l t a g e ( s e ) s h u t d o w n c u r r e n t v s . s u p p l y v o l t a g e m u t e c u r r e n t v s . s u p p l y v o l t a g e ( b t l ) 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 7 . 0 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 supply voltage ( v ) s u p p l y c u r r e n t ( m a ) no load 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 supply voltage ( v ) s h u t d o w n c u r r e n t ( ? a ) no load 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 7 . 0 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 supply voltage ( v ) s u p p l y c u r r e n t ( m a ) no load 0 . 0 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 supply voltage ( v ) s u p p l y c u r r e n t ( m a ) no load 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 - 70 + 0 - 60 - 50 - 40 - 30 - 20 - 10 20 20 k 100 1 k 10 k frequency ( hz ) p s r r ( d b ) v dd = 5 . 0 v r l = 4 w a v = 20 db v rr = 0 . 2 vpp aux - 0025 aes - 17 ( 20 khz ) input floating input to gnd - 80
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 1 a p a 2 6 0 3 a t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s m u t e c u r r e n t v s . s u p p l y v o l t a g e ( s e ) 0 . 0 0 . 0 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 supply voltage ( v ) s u p p l y c u r r e n t ( m a ) no load 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 a g c f u n c t i o n o u t p u t p o w e r v s . i n p u t a c a g c f u n c t i o n o u t p u t p o w e r v s . i n p u t a c 0 . 0 3 . 5 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 0 . 5 2 . 0 1 . 0 1 . 5 input voltage ( v ) v dd = 5 . 0 v r l = 4 w a v = 20 db v agc to gnd aux - 0025 aes - 17 ( 20 khz ) o u t p u t v o l t a g e ( v ) o u t p u t v o l t a g e ( v ) input voltage ( v ) 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 0 . 5 2 . 0 1 . 0 1 . 5 v dd = 5 . 0 v r l = 4 w a v = 20 db v agc = 1 . 7 v aux - 0025 aes - 17 ( 20 khz )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 2 a p a 2 6 0 3 a b l o c k d i a g r a m protection function gate drive gate drive routp vdd routn rin oscillator volume lin shutdown control gate drive gate drive loutp vdd loutn volume control biases & reference sd bypass bypass gnd agc control agc vdd gnd gnd mute hp _ rout hp _ lout se / btl se / btl under voltage detection circuit uvp
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 3 a p a 2 6 0 3 a t y p i c a l a p p l i c a t i o n c i r c u i t 5 agnd 4 agnd pgnd 21 9 se / btl vdd 23 6 lin pgnd 20 3 rin routn 22 2 bypass routp 24 loutn 19 vdd 18 7 volume loutp 17 8 mute 12 vdd 10 agc 11 uvp nc 16 hp _ rout 15 nc 14 hp _ lout 13 1 sd 1 m f c i 1 1 m f shutdown control right channel input signal left channel input signal 2 . 2 m f c b r 1 50 k w c i 2 4 w 0 . 1 m f c s 2 c s 3 1 m f 100 k w c s 6 vsys se / stl signal 220 m f 220 m f headphone jack 1 k w 1 k w ( top view ) apa 2603 a 4 w 10 m f c s 1 0 . 1 m f 100 k w se / btl signal v dd v dd v dd c c c c 1 m f c s 5 c s 7 1 m f r 2 r 3 r 4 r 5 0 . 1 m f c s 4 agc function 100 k w * recommend 100 k w * recommend mute control 5 agnd 4 agnd pgnd 21 9 se / btl vdd 23 6 lin pgnd 20 3 rin routn 22 2 bypass routp 24 loutn 19 vdd 18 7 volume loutp 17 8 mute 12 vdd 10 agc 11 uvp nc 16 hp _ rout 15 nc 14 hp _ lout 13 1 sd 1 m f c i 1 1 m f shutdown control right channel input signal left channel input signal 2 . 2 m f c b r 1 50 k w c i 2 4 w 0 . 1 m f c s 2 c s 3 1 m f 100 k w c s 6 vsys se / stl signal 220 m f 220 m f headphone jack 1 k w 1 k w ( top view ) apa 2603 a 4 w 10 m f c s 1 0 . 1 m f 100 k w se / btl signal v dd v dd v dd c c c c c s 7 1 m f r 2 r 3 0 . 1 m f c s 4 agc always disable 100 k w * recommend 100 k w * recommend mute control
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 4 a p a 2 6 0 3 a d c v o l u m e c o n t r o l t a b l e step btl gain (db) se gain (db) low (%) high (%) recom(%) low (v) high(v) recom(v) 1 20.0 3.5 0.00 1.84 0.00 0.000 0.092 0.00 2 19.6 3.2 2.33 3.39 2.86 0.116 0.170 0.14 3 19.2 2.9 3.82 4.97 4.40 0.191 0.249 0.22 4 18.8 2.6 5.40 6.53 5.97 0.270 0.32 6 0.30 5 18.4 2.3 6.96 8.06 7.51 0.348 0.403 0.38 6 17.6 1.7 8.49 9.62 9.06 0.425 0.481 0.45 7 17.2 1.4 10.05 11.18 10.61 0.502 0.559 0.53 8 16.8 1.1 11.61 12.73 12.17 0.580 0.637 0.61 9 16.4 0.8 13.19 14.29 13.74 0.659 0.714 0.69 10 16.0 0.5 1 4.74 15.83 15.29 0.737 0.791 0.76 11 15.6 0.2 16.30 17.38 16.84 0.815 0.869 0.84 12 15.2 - 0.2 17.83 18.92 18.38 0.892 0.946 0.92 13 14.8 - 0.5 19.37 20.49 19.93 0.969 1.025 1.00 14 14.4 - 0.8 20.91 22.04 21.47 1.045 1.102 1.07 15 14.0 - 1.2 22.48 23 .59 23.04 1.124 1.180 1.15 16 13.6 - 1.5 24.04 25.13 24.59 1.202 1.256 1.23 17 13.6 - 1.5 25.58 26.67 26.12 1.279 1.333 1.31 18 13.2 - 1.8 27.12 28.20 27.66 1.356 1.410 1.38 19 12.8 - 2.2 28.63 29.76 29.19 1.432 1.488 1.46 20 12.4 - 2.5 30.21 31.29 30 .75 1.510 1.565 1.54 21 12.0 - 2.9 31.75 32.83 32.29 1.587 1.641 1.61 22 11.6 - 3.2 33.28 34.39 33.83 1.664 1.719 1.69 23 11.2 - 3.6 34.82 35.92 35.37 1.741 1.796 1.77 24 10.8 - 3.9 36.37 37.50 36.94 1.819 1.875 1.85 25 10.4 - 4.3 37.93 39.04 38.48 1. 897 1.952 1.92 26 10.0 - 4.6 39.49 40.59 40.04 1.974 2.030 2.00 27 9.6 - 5.0 41.02 42.15 41.58 2.051 2.107 2.08 28 9.2 - 5.4 42.58 43.69 43.13 2.129 2.184 2.16 29 8.8 - 5.7 44.14 45.23 44.68 2.207 2.261 2.23 30 8.4 - 6.1 45.68 46.76 46.22 2.284 2.338 2.31 31 8.0 - 6.4 47.21 48.32 47.76 2.361 2.416 2.39 32 7.6 - 6.8 48.75 49.85 49.30 2.438 2.493 2.47
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 5 a p a 2 6 0 3 a d c v o l u m e c o n t r o l t a b l e ( c o n t . ) step btl gain (db) se gain (db) low (%) high (%) recom(%) low (v) high(v) recom(v) 33 7.2 - 7.2 50.31 51.41 50.86 2.515 2.571 2.54 34 6.8 - 7.5 51.86 52.96 52.41 2.593 2.648 2.62 35 6.4 - 7.9 53.38 54.52 53.95 2.669 2.726 2.70 36 6.0 - 8.3 54.95 56.06 55.51 2.748 2.803 2.78 37 5.6 - 8.6 56.49 57.60 57.04 2.825 2.880 2.85 38 5.2 - 9.0 58.03 59.17 58.60 2.901 2.959 2.93 39 4.8 - 9.4 59.60 60.71 60.16 2.980 3.036 3.01 40 4.4 - 9.8 61.14 62.24 61.69 3.057 3.112 3.08 41 4.0 - 10.1 62.65 63.78 63.22 3.13 3 3.189 3.16 42 3.6 - 10.5 64.21 65.32 64.77 3.211 3.266 3.24 43 3.2 - 10.9 65.75 66.83 66.29 3.287 3.342 3.31 44 2.8 - 11.3 67.27 68.39 67.83 3.363 3.420 3.39 45 2.4 - 11.6 68.82 69.95 69.39 3.441 3.497 3.47 46 2.0 - 12.0 70.38 71.51 70.94 3.519 3.57 5 3.55 47 1.6 - 12.4 71.94 73.06 72.50 3.597 3.653 3.62 48 1.2 - 12.8 73.49 74.62 74.06 3.675 3.731 3.70 49 0.8 - 13.1 75.05 76.17 75.61 3.753 3.809 3.78 50 0.4 - 13.5 76.59 77.71 77.15 3.829 3.886 3.86 51 0.0 - 13.9 78.12 79.23 78.68 3.906 3.962 3.93 52 - 1.0 - 14.9 79.66 80.78 80.22 3.983 4.039 4.01 53 - 2.0 - 15.8 81.20 82.32 81.76 4.060 4.116 4.09 54 - 3.0 - 16.8 82.75 83.88 83.32 4.138 4.194 4.17 55 - 5.0 - 18.8 84.29 85.43 84.86 4.214 4.272 4.24 56 - 7.0 - 20.7 85.82 86.99 86.41 4.291 4.350 4.32 57 - 9.0 - 22.7 87.38 88.53 87.95 4.369 4.426 4.40 58 - 11.0 - 24.7 88.92 90.06 89.49 4.446 4.503 4.47 59 - 17.0 - 30.7 90.46 91.62 91.04 4.523 4.581 4.55 60 - 23.0 - 36.9 92.01 93.20 92.61 4.601 4.660 4.63 61 - 29.0 - 43.0 93.57 94.71 94.14 4.678 4.736 4. 71 62 - 35.0 - 49.3 95.10 96.25 95.68 4.755 4.813 4.78 63 - 41.0 - 55.3 96.64 97.81 97.22 4.832 4.890 4.86 64 - 80.0 - 80.0 98.20 100.00 100.00 4.910 5.000 5.00
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 6 a p a 2 6 0 3 a f u n c t i o n d e s c r i p t i o n class-d operation f i g u r e 1 . t h e a p a 2 6 0 3 a o u t p u t w a v e f o r m ( v o l t a g e & c u r r e n t ) t h e a p a 2 6 0 3 a p o w e r a m p l i f i e r m o d u l a t i o n s c h e m e i s s h o w n i n f i g u r e 1 ; t h e o u t p u t s v o u t p a n d v o u t n a r e i n p h a s e w i t h e a c h o t h e r w h e n n o i n p u t s i g n a l s . w h e n o u t p u t > 0 v , t h e d u t y c y c l e o f v o u t p i s g r e a t e r t h a n 5 0 % a n d v o u t n i s l e s s t h a n 5 0 % ; w h e n o u t p u t < 0 v , t h e d u t y c y c l e o f v o u t p i s l e s s t h a n 5 0 % a n d v o u t n i s g r e a t e r t h a n 5 0 % . t h i s m e t h o d r e d u c e s t h e s w i t c h i n g c u r r e n t a c r o s s t h e l o a d , a n d r e - d u c e s t h e i 2 r l o s s e s i n t h e l o a d t h a t i m p r o v e t h e a m p l i f i e r ? s e f f i c i e n c y . t h i s m o d u l a t i o n s c h e m e h a s v e r y s h o r t p u l s e s a c r o s s t h e l o a d , t h i s m a k i n g t h e s m a l l r i p p l e c u r r e n t a n d v e r y l i t t l e l o s s o n t h e l o a d , a n d t h e l c f i l t e r c a n b e e l i m i n a t e i n m o s t a p p l i c a t i o n s . a d d e d t h e l c f i l t e r c a n i n c r e a s e t h e e f f i c i e n c y b y f i l t e r t h e r i p p l e c u r r e n t . bypass voltage the bypass voltage is equal to v dd /2, this voltage is for bias the internal preamplifier stages. the external ca- pacitor for this reference (c b ) is a critical component and serves several important functions. dc volume control function t h e a p a 2 6 0 3 a h a s a n i n t e r n a l s t e r e o v o l u m e c o n t r o l w h o s e s e t t i n g i s t h e f u n c t i o n o f t h e d c v o l t a g e a p p l i e d t o t h e v o l u m e i n p u t p i n . t h e a p a 2 6 0 3 a v o l u m e c o n t r o l c o n - s i s t s o f 6 4 s t e p s t h a t a r e i n d i v i d u a l l y s e l e c t e d b y a v a r i - a b l e d c v o l t a g e l e v e l o n t h e v o l u m e c o n t r o l p i n . t h e r a n g e o f t h e s t e p s c o n t r o l l e d b y t h e d c v o l t a g e , a r e f r o m + 2 0 d b t o - 8 0 d b . e a c h g a i n s t e p c o r r e s p o n d s t o a s p e - c i f i c i n p u t v o l t a g e r a n g e , a s s h o w n i n t h e t a b l e . t o m i n i - m i z e t h e e f f e c t o f n o i s e o n t h e v o l u m e c o n t r o l p i n , w h i c h c a n a f f e c t t h e s e l e c t e d g a i n l e v e l , h y s t e r e s i s a n d c l o c k d e l a y a r e i m p l e m e n t e d . t h e a m o u n t o f h y s t e r e s i s c o r r e - s p o n d s t o h a l f o f t h e s t e p w i d t h , a s s h o w n i n t h e ? d c v o l u m e c o n t r o l g r a p h ? . f o r t h e h i g h e s t a c c u r a c y , t h e v o l t a g e s h o w n i n t h e ? r e c - o m m e n d e d v o l t a g e ? c o l u m n o f t h e t a b l e i s u s e d t o s e l e c t a d e s i r e d g a i n . t h i s r e c o m m e n d e d v o l t a g e i s e x a c t l y h a l f - w a y b e t w e e n t h e t w o n e a r e s t t r a n s i t i o n s . t h e g a i n s l e v e l h a v e a r e 0 . 4 d b / s t e p f r o m 2 0 d b t o 0 d b ; 1 d b / s t e p f r o m 0 d b t o - 3 d b ; 2 d b / s t e p f r o m - 3 d b t o - 1 1 d b a n d 6 d b / s t e p f r o m - 1 1 d b t o - 4 1 d b a n d t h e l a s t s t e p a t - 8 0 d b a s m u t e m o d e . v outp v out (v outp -v outn ) i out i out output = 0v output > 0v i out output < 0v v outn v outp v outn v outn v outp v out (v outp -v outn ) v out (v outp -v outn ) agc (non-clipping) function t h e a p a 2 6 0 3 a p r o v i d e s t h e 6 4 s t e p s n o n - c l i p p i n g c o n t r o l , a n d t h e r a n g e i s f r o m 2 0 d b t o - 8 0 d b . w h e n t h e o u t p u t r e a c h e s t h e m a x i m u m p o w e r s e t t i n g v a l u e , t h e i n t e r n a l p r o g r a m m a b l e g a i n a m p l i f i e r ( p g a ) w i l l d e c r e a s e t h e g a i n f o r p r e v e n t t h e o u t p u t w a v e f o r m c l i p p i n g . t h i s f e a t u r e p r e - v e n t s s p e a k e r d a m a g e f r o m o c c u r r i n g c l i p p i n g . u s i n g t h e a g c p i n t o s e t t h e n o n - c l i p p i n g f u n c t i o n a n d l i m i t t h e o u t p u t p o w e r .
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 7 a p a 2 6 0 3 a f u n c t i o n d e s c r i p t i o n ( c o n t . ) table 1: agc setting threshold v.s output power agc function output power vdd~0.45vdd or agc floating disable agc function 0.45vdd~0.27vdd 8() 2 agc ? vdd-v po= rl x0.95 0.27vdd~gnd (max output power 4 w ) po=2.45w (max output power 8 w ) po=1.225w shutdown operation i n o r d e r t o r e d u c e p o w e r c o n s u m p t i o n w h i l e n o t i n u s e , t h e a p a 2 6 0 3 a c o n t a i n s a s h u t d o w n f u n c t i o n t o e x t e r n a l l y t u r n o f f t h e a m p l i f i e r b i a s c i r c u i t r y . t h i s s h u t d o w n f e a t u r e t u r n s t h e a m p l i f i e r o f f w h e n l o g i c l o w i s p l a c e d o n t h e s d p i n f o r a p a 2 6 0 3 a . t h e t r i g g e r p o i n t b e t w e e n a l o g i c h i g h a n d l o g i c l o w l e v e l i s t y p i c a l l y 0 . 6 5 v . i t i s t h e b e s t t o s w i t c h b e t w e e n g r o u n d a n d t h e s u p p l y v o l t a g e v d d t o p r o v i d e m a x i m u m d e v i c e p e r f o r m a n c e . b y s w i t c h i n g t h e s d p i n t o a l o w l e v e l , t h e a m p l i f i e r e n t e r s a l o w - c o n s u m p t i o n - c u r r e n t s t a t e , i d d f o r a p a 2 6 0 3 a i s i n s h u t d o w n m o d e . o n n o r m a l o p e r a t i n g , a p a 2 6 0 3 a ? s s d p i n s h o u l d p u l l t o a h i g h l e v e l t o k e e p t h e i c o u t o f t h e s h u t d o w n m o d e . t h e s d p i n s h o u l d b e t i e d t o a d e f i n i t e v o l t a g e t o a v o i d u n - w a n t e d s t a t e c h a n g e s . over-current protection t h e a p a 2 6 0 3 a m o n i t o r s t h e o u t p u t c u r r e n t , a n d w h e n t h e c u r r e n t e x c e e d s t h e c u r r e n t - l i m i t t h r e s h o l d , t h e a p a 2 6 0 3 a t u r n - o f f t h e o u t p u t s t a g e t o p r e v e n t t h e o u t p u t d e v i c e f r o m d a m a g e s i n o v e r - c u r r e n t o r s h o r t - c i r c u i t c o n d i t i o n . t h e i c w i l l t u r n - o n t h e o u t p u t b u f f e r a f t e r 2 0 0 m s , b u t i f t h e o v e r - c u r r e n t o r s h o r t - c i r c u i t s c o n d i t i o n i s s t i l l r e m a i n , i t e n t e r s t h e o v e r - c u r r e n t p r o t e c t i o n a g a i n . t h e s i t u a t i o n w i l l c i r - c u l a t e u n t i l t h e o v e r - c u r r e n t o r s h o r t - c i r c u i t s h a s b e r e m o v e d . thermal protection t h e o v e r - t e m p e r a t u r e c i r c u i t l i m i t s t h e j u n c t i o n t e m p e r a - t u r e o f t h e a p a 2 6 0 3 a . w h e n t h e j u n c t i o n t e m p e r a t u r e e x - c e e d s t j = + 1 6 5 o c , a t h e r m a l s e n s o r t u r n s o f f t h e o u t p u t b u f f e r , a l l o w i n g t h e d e v i c e s t o c o o l . t h e t h e r m a l s e n s o r a l l o w s t h e a m p l i f i e r t o s t a r t - u p a f t e r t h e j u n c t i o n t e m p e r a - t u r e d o w n a b o u t 1 4 0 o c . t h e t h e r m a l p r o t e c t i o n i s d e - s i g n e d w i t h a 2 5 o c h y s t e r e s i s t o l o w e r t h e a v e r a g e t j d u r i n g c o n t i n u o u s t h e r m a l o v e r l o a d c o n d i t i o n s , i n c r e a s - i n g l i f e t i m e o f t h e i c . u n d e r - v o l t a g e p r o t e c t i o n external under voltage detection can be used to shut- down the apa2603a before an input device can generate a pop. the shutdown threshold at the uvp pin is 1.2v. the user selects a resistor divider to obtain the shut- down threshold and hysteresis for the specific application. the thresholds can be determined as below: with the condition: r3 >> r1// r2 vuvp=[1.2-(5.7 m axr3)] x (r1+r2)/r2 hysteresis=4.6 m a x r3 x (r1+r2)/r2 for example, to obtain vuvp=3.7v and 0.9v hysteresis, r1=3k w , r2=1k w and r3=50k w . only if external voltage v system is lower than the shutdown thershold vuvp, the apa2603a is in shutdown mode. on the other hand, v system could be pulled higher than v hys (vuvp + hysteresis=4. 6v) to keep the ic out of shutdown mode. mute operation w h e n p l a c e t h e l o g i c h i g h o n m u t e p i n , t h e a p a 2 6 0 3 a ? s o u t p u t s r u n s a t a c o n s t a n t 5 0 % d u t y c y c l e , a n d t h e a p a 2 6 0 3 a i s a t m u t e s t a t e . p l a c e t h e l o g i c l o w o n m u t e p i n e n a b l e s t h e o u t p u t s , a n d t h e o u t p u t c h a n g e s t h e d u t y c y c l e w i t h t h e i n p u t s i g n a l . t h i s p i n c o u l d b e u s e d a s a q u i c k d i s a b l e / e n a b l e o f o u t p u t s w h e n c h a n g i n g c h a n n e l s o n a t e l e v i s i o n o r t r a n s i t i o n i n g b e t w e e n d i f f e r e n t a u d i o s o u r c e s . t h e m u t e p i n m u s t n o t b e f l o a t i n g . uvp pin 1 . 2 v v system r 1 r 3 r 2 3 k w 1 k w 50 k w 5 . 7 m a figure 2 . under - voltage protection
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 8 a p a 2 6 0 3 a a p p l i c a t i o n i n f o r m a t i o n square wave into the speaker a p p l y t h e s q u a r e w a v e i n t o t h e s p e a k e r m a y c a u s e t h e v o i c e c o i l o f s p e a k e r j u m p i n g o u t t h e a i r g a p a n d d e f a c i n g t h e v o i c e c o i l . h o w e v e r , t h i s d e p e n d s o n t h e a m p l i t u d e o f s q u a r e w a v e i s h i g h e n o u g h a n d t h e b a n d w i d t h o f s p e a k e r i s h i g h e r t h a n t h e s q u a r e w a v e ? | s f r e q u e n c y . f o r 5 0 0 k h z s w i t c h i n g f r e q u e n c y , t h i s i s n o t i s s u e d f o r t h e s p e a k e r b e c a u s e t h e f r e q u e n c y i s b e y o n d t h e a u d i o b a n d a n d c a n ? | t s i g n i f i c a n t l y m o v e t h e v o i c e c o i l , a s c o n e m o v e m e n t i s p r o p o r t i o n a l t o 1 / f 2 f o r f r e q u e n c y o u t o f a u d i o b a n d . input resistor, r i f o r a c h i e v i n g t h e 6 4 s t e p s g a i n s e t t i n g , i t v a r i e s t h e i n p u t r e s i s t a n c e n e t w o r k ( r i & r f ) o f a m p l i f i e r . t h e i n p u t r e s i s t o r ? s r a n g e f o r m s m a l l e s t t o m a x i m u m i s a b o u t 3 . 5 t i m e s . t h e r e f o r e , t h e i n p u t h i g h - p a s s f i l t e r ? s l o w c u t o f f f r e q u e n c y w i l l c h a n g e 3 . 5 t i m e s f r o m l o w t o h i g h . t h e c u t o f f f r e q u e n c y c a n b e c a l c u l a t e d b y e q u a t i o n 1 . input capacitor, c i i n t h e t y p i c a l a p p l i c a t i o n , a n i n p u t c a p a c i t o r , c i , i s r e q u i r e d t o a l l o w t h e a m p l i f i e r t o b i a s t h e i n p u t s i g n a l t o t h e p r o p e r d c l e v e l f o r o p t i m u m o p e r a t i o n . i n t h i s c a s e , c i a n d t h e i n p u t i m p e d a n c e r i f o r m a h i g h - p a s s f i l t e r w i t h t h e c o r n e r f r e q u e n c y d e t e r m i n e d i n t h e f o l l o w i n g e q u a t i o n : ( 1 ) i i ) c(highpass c r 2 1 f p = t h e v a l u e o f c i m u s t b e c o n s i d e r e d c a r e f u l l y b e c a u s e i t d i r e c t l y a f f e c t s t h e l o w f r e q u e n c y p e r f o r m a n c e o f t h e c i r c u i t . w h e r e r i i s 3 6 k w ( m i n i m u m ) a n d t h e s p e c i f i c a t i o n c a l l s f o r a f l a t b a s s r e s p o n s e d o w n t o 5 0 h z . t h e e q u a t i o n i s r e c o n f i g u r e d a s b e l o w : ( 2 ) c i i f r 2 1 c p = w h e n t h e i n p u t r e s i s t a n c e v a r i a t i o n i s c o n s i d e r e d , t h e c i i s 0 . 0 8 m f , s o a v a l u e i n t h e r a n g e o f 0 . 0 1 m f t o 0 . 0 2 2 m f w o u l d b e c h o s e n . a f u r t h e r c o n s i d e r a t i o n f o r t h i s c a p a c i - t o r i s t h e l e a k a g e p a t h f r o m t h e i n p u t s o u r c e t h r o u g h t h e i n p u t n e t w o r k ( r i + r f , c i ) t o t h e l o a d . t h i s l e a k a g e c u r r e n t c r e a t e s a d c o f f s e t v o l t a g e a t t h e i n p u t t o t h e a m p l i f i e r t h a t r e d u c e s u s e f u l h e a d r o o m , e s p e c i a l l y i n h i g h g a i n a p p l i c a t i o n s . f o r t h i s r e a s o n , a l o w - l e a k a g e t a n t a l u m o r c e r a m i c c a p a c i t o r i s t h e b e s t c h o i c e . w h e n p o l a r i z e d c a - p a c i t o r s a r e u s e d , t h e p o s i t i v e s i d e o f t h e c a p a c i t o r s h o u l d f a c e t h e a m p l i f i e r s ? i n p u t i n m o s t a p p l i c a t i o n s b e c a u s e t h e d c l e v e l o f t h e a m p l i f i e r s ? i n p u t s a r e h e l d a t v d d / 2 . p l e a s e n o t e t h a t i t i s i m p o r t a n t t o c o n f i r m t h e c a p a c i t o r p o l a r i t y i n t h e a p p l i c a t i o n . 20 30 40 50 60 70 80 90 100 110 120 130 140 - 40 - 35 - 30 - 25 - 20 - 15 - 10 - 5 0 5 10 15 20 gain vs . input resistance i n p u t r e s i s t a n c e ( k w ) gain ( db ) effective bypass capacitor, c b as with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. the bypass capacitance sffects the startiup time. it is determined in the following wquation: the capacitor location on the bypass pin should be as close to the device as possible. the effect of a larger half bypass capacitor is improved psrr due to increased half-supply stability. the selection of bypass capacitors, especially c b , is thus dependent upon desired psrr requirements, click and pop performance. to avoid the start-up pop noise occurred, choose c i which is not larger than c b . t s t a r t - u p = 0 . 5 ( s e c / m f ) x c b + 0 . 2 ( s e c ) ( 3 )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 1 9 a p a 2 6 0 3 a a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) f i g u r e 2 . f e r r i t e b e a d o u t p u t f i l t e r v on v op 4 w 1n f 1n f ferrite bead ferrite bead f i g u r e 3 a n d 4 a r e e x a m p l e s f o r a d d e d t h e l c f i l t e r ( b u t t e r w o r t h ) , i t ? s r e c o m m e n d e d f o r t h e s i t u a t i o n t h a t t h e t r a c e f o r m a m p l i f i e r t o s p e a k e r i s t o o l o n g a n d n e e d s t o e l i m i n a t e t h e r a d i a t e d e m i s s i o n o r e m i . f i g u r e 3 . l c o u t p u t f i l t e r f o r 8 w s p e a k e r outp outn 8 w 1 m f 36 m h 36 m h 1 m f f i g u r e 4 . l c o u t p u t f i l t e r f o r 4 w s p e a k e r outp outn 4 w 2.2 m f 18 m h 18 m h 2.2 m f f i g u r e 3 a n d 4 ? s l o w p a s s f i l t e r c u t - o f f f r e q u e n c y a r e 2 5 k h z ( f c ) . lc 2 1 f c(lowpass) p = ( 5 ) power-supply decoupling capacitor, c s t h e a p a 2 6 0 3 a i s a h i g h - p e r f o r m a n c e c m o s a u d i o a m - p l i f i e r t h a t r e q u i r e s a d e q u a t e p o w e r s u p p l y d e c o u p l i n g t o e n s u r e t h e o u t p u t t o t a l h a r m o n i c d i s t o r t i o n ( t h d ) i s a s l o w a s p o s s i b l e . p o w e r s u p p l y d e c o u p l i n g a l s o p r e v e n t s t h e o s c i l l a t i o n s b e i n g c a u s e d b y l o n g l e a d l e n g t h b e - t w e e n t h e a m p l i f i e r a n d t h e s p e a k e r . ferrite bead selection i f t h e t r a c e s f o r m a p a 2 6 0 3 a t o s p e a k e r a r e s h o r t , t h e f e r - r i t e b e a d f i l t e r s c a n r e d u c e t h e h i g h f r e q u e n c y r a d i a t e d t o m e e t t h e f c c & c e r e q u i r e d . a f e r r i t e t h a t h a s v e r y l o w i m p e d a n c e a t l o w f r e q u e n c i e s a n d h i g h i m p e d a n c e a t h i g h f r e q u e n c i e s ( a b o v e 1 m h z ) i s r e c o m m e n d e d . i f t h e t r a c e s f o r m a p a 2 6 0 3 a t o s p e a k e r a r e s h o r t , i t d o e s n ? t r e q u i r e o u t p u t f i l t e r f o r f c c & c e s t a n d a r d . a f e r r i t e b e a d m a y b e n e e d e d i f i t ? s f a i l i n g t h e t e s t f o r f c c o r c e t e s t e d w i t h o u t t h e l c f i l t e r . t h e f i g u r e 2 i s t h e s a m p l e f o r a d d e d f e r r i t e b e a d ; t h e f e r r i t e s h o w s c h o o s i n g h i g h i m p e d a n c e i n h i g h f r e q u e n c y . output low-pass filter
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 0 a p a 2 6 0 3 a a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) layout recommendation f i g u r e 5 . a p a 2 6 0 3 s o p - 1 6 p & a p a 2 6 0 3 a s o p - 2 4 c o - l a y o u t l a n d p a t t e r n r e c o m m e n d a t i o n 1 . a l l c o m p o n e n t s s h o u l d b e p l a c e d c l o s e t o t h e a p a 2 6 0 3 a . f o r e x a m p l e , t h e i n p u t c a p a c i t o r ( c i ) s h o u l d b e c l o s e t o a p a 2 6 0 3 a ? s i n p u t p i n s t o a v o i d c a u s i n g n o i s e c o u p l i n g t o a p a 2 6 0 3 a ? s h i g h i m p e d a n c e i n p u t s ; t h e d e c o u p l i n g c a p a c i t o r ( c s ) s h o u l d b e p l a c e d b y t h e a p a 2 6 0 3 a ? s p o w e r p i n t o d e c o u p l e t h e p o w e r r a i l n o i s e . 2 . t h e o u t p u t t r a c e s s h o u l d b e s h o r t , w i d e ( > 5 0 m i l ) a n d s y m m e t r i c . 3 . t h e i n p u t t r a c e s h o u l d b e s h o r t a n d s y m m e t r i c . 4 . t h e p o w e r t r a c e w i d t h s h o u l d g r e a t e r t h a n 5 0 m i l . 5 . t h e s o p - 1 6 p t h e r m a l p a d s h o u l d b e s o l d e r e d o n p c b 6 . a p a 2 6 0 3 a n d a p a 2 6 0 3 a s h a r e t h e f i r s t 8 p i n s t o a v o i d s o l d e r i n g s h o r t . a p a 2 6 0 3 ? s r i g h t h a l f p a d s a r e c o n - n e c t e d t o a p a 2 6 0 3 a b y l i n e s . the optimum decoupling is achieved by using two differ- ent types of capacitors that target on different types of noise on the power supply leads. for higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (esr) ceramic capacitor, typically 0.1 m f placed as close as possible to the device vdd pin for works best. for filtering lower frequency noise signals, a large aluminum electrolytic capacitor of 10 m f or greater placed near the audio power amplifier is recommended. power-supply decoupling capacitor, c s (cont.) 0 . 7 mm 2 . 54 mm via diameter = 0 . 3 mm x 8 1 . 27 mm 4 . 0 mm 2 . 5 mm 5 . 5 mm 2 . 0 mm 11 . 05 mm 0 . 27 mm f i g u r e 6 . q f n 4 x 4 - 2 0 a l a n d p a t t e r n r e c o m m e n d a t i o n 1 . a l l c o m p o n e n t s s h o u l d b e p l a c e d c l o s e t o t h e a p a 2 6 0 3 a . f o r e x a m p l e , t h e i n p u t c a p a c i t o r ( c i ) s h o u l d b e c l o s e t o a p a 2 6 0 3 a ? s i n p u t p i n s t o a v o i d c a u s i n g n o i s e c o u p l i n g t o a p a 2 6 0 3 a ? s h i g h i m p e d a n c e i n p u t s ; t h e d e c o u p l i n g c a p a c i t o r ( c s ) s h o u l d b e p l a c e d b y t h e a p a 2 6 0 3 a ? s p o w e r p i n t o d e c o u p l e t h e p o w e r r a i l n o i s e . 2 . t h e o u t p u t t r a c e s s h o u l d b e s h o r t , w i d e ( > 5 0 m i l ) , a n d s y m m e t r i c . 3 . t h e i n p u t t r a c e s h o u l d b e s h o r t a n d s y m m e t r i c . 4 . t h e p o w e r t r a c e w i d t h s h o u l d g r e a t e r t h a n 5 0 m i l . 5 . t h e q f n 4 x 4 - 2 0 a t h e r m a l p a d s h o u l d b e s o l d e r e d o n p c b , a n d t h e g r o u n d p l a n e n e e d s s o l d e r e d m a s k ( t o a v o i d s h o r t - c i r c u i t ) e x c e p t t h e t h e r m a l p a d a r e a . 0.5mm 0.28mm 2.2mm ground plane for thermal pad thermalvia diameter 0.3mm x 5 3 . 2 m m 1mm solder mask to prevent short-circuit
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 1 a p a 2 6 0 3 a p a c k a g e i n f o r m a t i o n sop-24 a 1 a 2 see view a c h x 4 5 o d e 1 e b e s y m b o l min. max. 2.65 2.05 0.20 0.33 a a2 c d e e l h millimeters b 0.31 0.51 1.27 bsc sop-24 0.40 1.27 0.25 0.75 0.050 bsc min. max. inches 0.104 0.081 0.012 0.020 0.008 0.013 0.016 0.050 0.010 0.030 q 0 o 8 o 0 o 8 o 0.10 a1 0.30 0.004 0.012 e1 7.40 7.60 0.291 0.299 10.10 10.50 0.398 0.413 15.20 15.60 0.598 0.614 note: 1. follow jedec ms-013 ad. 2. dimension ? d ? does not include mold flash, protrusions or gate burrs. mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. dimension ? e ? does not include inter-lead flash or protrusions. inter-lead flash and protrusions shall not exceed 10 mil per side. view a seating plane gauge plane q 0 . 2 5 l a
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 2 a p a 2 6 0 3 a p a c k a g e i n f o r m a t i o n dip-24 s y m b o l min. max. 5.33 2.92 1.14 1.78 a a2 b2 c d e e1 e millimeters b 0.36 0.56 7.62 bsc dip-24 7.62 7.11 min. max. inches 0.210 0.115 0.014 0.022 0.045 0.070 0.300 0.240 0.280 8.26 0.38 a1 4.95 0.015 0.195 d1 0.13 6.10 0.005 0.325 29.46 30.35 1.160 1.195 0.20 0.35 0.008 0.014 d e 1 0 . 3 8 e ea eb c e b2 b d1 l a a 1 a 2 10.92 0.430 2.92 3.81 0.115 0.150 l eb ea 2.54 bsc 0.100 bsc 0.300 bsc
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 3 a p a 2 6 0 3 a p a c k a g e i n f o r m a t i o n qfn4x4-20a note : 1. followed from jedec mo-220 vggd-5. s y m b o l min. max. 1.00 0.00 0.18 0.30 2.00 2.50 0.05 2.00 a a1 b d d2 e e2 e l millimeters a3 0.20 ref qfn4x4-20a 0.35 0.45 2.50 0.008 ref min. max. inches 0.039 0.000 0.008 0.012 0.079 0.098 0.079 0.014 0.018 0.80 0.098 0.031 0.002 0.50 bsc 0.020 bsc k 0.20 0.008 3.90 4.10 0.154 0.161 3.90 4.10 0.154 0.161 e pin 1 corner e 2 k l d2 a1 a3 b a d e pin 1
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 4 a p a 2 6 0 3 a application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 24.40+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 24.0 ? 0.30 1.75 ? 0.10 11.5 ? 0.10 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 sop - 24 4.0 ? 0.10 12.0 ? 0.10 2.0 ? 0.10 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 10.9 ? 0.20 15.80 ? 0.20 3.10 ? 0.20 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 12.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 12.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.05 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 qfn4x4 - 20a 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0 .05 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 4.30 ? 0.20 4.30 ? 0.20 1.30 ? 0.20 (mm) c a r r i e r t a p e & r e e l d i m e n s i o n s d e v i c e s p e r u n i t application unit quantity sop - 24 tape & real 1000 qfn4x4 - 20a tape & real 3000 h t1 a d a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 5 a p a 2 6 0 3 a t a p i n g d i r e c t i o n i n f o r m a t i o n sop-24 user direction of feed qfn4x4-20a user direction of feed
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 6 a p a 2 6 0 3 a c l a s s i f i c a t i o n p r o f i l e
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 7 a p a 2 6 0 3 a profile feature sn - pb eutectic assembly pb - free assembly preheat & soak temperature min (t smin ) temperature max (t smax ) time (t smin to t smax ) ( t s ) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 1 2 0 seconds average ramp - up rate (t smax to t p ) 3 c/second ma x. 3 c/second max. liquidous temperature ( t l ) time at l iquidous (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak package body temperature (t p ) * see classification temp in table 1 see classification temp in table 2 time (t p ) ** within 5 c of the spec ified c lassification t emperature ( t c ) 2 0 ** seconds 3 0 ** seconds average r amp - down rate (t p to t smax ) 6 c/second max. 6 c/second max. time 25 c to p eak t emperature 6 minutes max. 8 minutes max. * tolerance for peak profile temperature (t p ) is defined a s a supplier minimum and a user maximum. ** tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. c l a s s i f i c a t i o n r e f l o w p r o f i l e s table 1. snpb eutectic process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 235 c 22 0 c 3 2.5 mm 220 c 220 c table 2. pb - free process ? classification temperatures (tc) package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 c 260 c 260 c 1.6 mm ? 2.5 mm 260 c 250 c 245 c 3 2.5 mm 250 c 245 c 245 c r e l i a b i l i t y t e s t p r o g r a m test item method description solderability jesd - 22, b102 5 sec, 245 c holt jesd - 22, a108 1000 hrs, bias @ tj=125 c pct jesd - 22, a102 168 hrs, 100 % rh, 2atm , 121 c tct jesd - 22, a104 500 cycles, - 65 c~150 c hbm mil - std - 883 - 3015.7 vhbm ? 2kv mm jesd - 22, a1 15 vmm ? 200v latch - up jesd 78 10ms, 1 tr ? 100ma
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 6 - m a r . , 2 0 1 3 w w w . a n p e c . c o m . t w 2 8 a p a 2 6 0 3 a c u s t o m e r s e r v i c e a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8


▲Up To Search▲   

 
Price & Availability of APA2603AJI-TRG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X